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SYNOPSIS 

A phenomenological model is presented to assess the effects of phase mixing on storage 
modulus vs. temperature data in polymer blends comprising a continuous glassy matrix 
and discrete rubbery inclusions. An extension of the Kerner-Dickie model, it  is developed 
for systems of low-dispersed phase content with a moderate degree of intermixing, and 
compared with experimental data for six blends of polystyrene or lightly hydroxylated 
polystyrene with poly(ethy1 acrylate) at 90/10 and 70/30 w/w compositions. Phase mixing 
is induced in this system through intercomponent hydrogen bonding. The model successfully 
represents data for the four blends of lowest interphase content, but fails for the other two. 
The model can evidently provide a good description of blends where the bulk of each 
component resides in a pure phase, but fails when the mixed interphase constitutes the 
majority of the material. 0 1995 John Wiley & Sons. Inc. 

INTRODUCTION 

Isochronal linear viscoelastic properties have been 
successfully represented for numerous multiphase 
polymer systems, using a variety of conceptually 
simple mechanical models.'-4 With appropriate 
modifications, such models can also represent data 
from block copolymers or polymer blends where 
some degree of phase mixing  exist^.^-" Cohen and 
Fbmos5 studied binary and ternary blends of an iso- 
prene-butadiene diblock copolymer with either or 
both of the corresponding homopolymers. They 
found that data from dynamic mechanical thermal 
analysis (DMTA) could be well represented by a 
form of the Takayanagi model.' For the ternary 
blend case, model predictions proved very sensitive 
to the location of the diblock copolymer in the sys- 
tem, providing a tool to assess the compatibilizing 
activity of such copolymers. Diamant et a1.6 used an 
extension of the Nielsen model2 to characterize the 
interphase in styrene-butadiene-styrene triblock 
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copolymers, prepared by casting from a variety of 
solvents. Their modeling results provided detailed 
information concerning the effect of solvent type on 
the volume fraction of mixed material, or interphase, 
and the composition profile across the interphase. 
In a similar vein, Annighofer and Gronski modeled 
DMTA data from specially designed triblock copol- 
ymers, where the endblocks were styrene and iso- 
prene and the midblock was a random styrene-iso- 
prene copolymer of variable length. Phase mixing 
between the styrene and isoprene endblocks was 
modified by controlling the length of the midblock. 
The interfacial thickness extracted from DMTA 
modeling agreed well with independent experimental 
determinations via small-angle X-ray scattering and 
densitometric transmission electron microscopy! 

Recently, we have used a modification9 of the 
Takayanagi model ',lo to represent data from 50/50 
w/w blends of polystyrene, PS, and poly(ethy1 ac- 
rylate), PEA. The extent of mixing between com- 
ponents was adjusted by introducing variable levels 
of phenolic hydroxyl groups onto the polystyrene 
chains, yielding lightly hydroxylated polystyrene 
(HPS ) . The model gave a very satisfactory repre- 
sentation of DMTA data, namely, storage modulus 
E' and loss tangent tan 6 vs. temperature. For sys- 
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Figure 1 Schematic of the microstructure represented 
by the original Kerner-Dickie model, where, in our case, 
the matrix is PS. Top sketch illustrates a cross-section of 
the system morphology; bottom sketch maps the normal- 
ized PS segment concentration (@.ps) over the cross-sec- 
tion. 

tems of low functionalization level, the model pro- 
vided a measure of the volume fraction of interfacial 
material in the blend while for highly functionalized 
systems, where no pure HPS or PEA remained, the 
model provided an estimate of the amplitude of con- 
centration variations in the system. However, the 
model assumes cocontinuity of the two phases and, 
thus, is only successful in representing data for 
blends with compositions near 50/50. As many 
blends of practical interest have very asymmetric 
compositions-particularly rubber-toughened plas- 
tics, with a glassy matrix and rubber inclusions- 
we develop here a model that provides similar in- 
formation for the asymmetric case. The model is 
based on the pioneering work of Kerner,” who de- 
rived expressions for the bulk and shear moduli of 
an isotropic composite comprising noninteracting 
spherical particles distributed within a homogeneous 
matrix. His simple closed-form equations involve 
only the volume fraction of inclusions and the mod- 
uli and Poisson’s ratio of the inclusions and matrix. 

Dickie l2 used the correspondence principle-the 
substitution of complex dynamic moduli for the 
analogous elastic quantities in the Kerner equa- 

tion-to extend the model to the dynamic case. 
Comparisons between the model and experimental 
DMTA data by Dickie and c o - w ~ r k e r s ~ ~ ~ ~ ~  constitute 
the most comprehensive application of the Kerner 
theory to heterogeneous polymer blends. For sys- 
tems comprising glassy inclusions in a rubbery ma- 
trix, the model does not represent experimental data 
well; Dickie discusses possible origins of these dis- 
crepancies.” By contrast, for systems of the rubbery 
inclusions/glassy matrix type, general features and 
trends exhibited in experimental data were consis- 
tently reproduced by the Kerner-Dickie equation. 
However, modulus values were typically overesti- 
mated when the volume fraction of inclusions was 
equated to the known volume fraction of rubber. 
Better quantitative agreement was obtained by de- 
fining a “mechanically effective” dispersed phase 
volume fraction, VME,  empirically selected to match 
the measured modulus values. For a blend compris- 
ing a glassy poly (methyl methacrylate) matrix and 
rubbery poly (butyl acrylate ) inclusions, Dickie’s 
values for VM, were - 20% greater (relative basis) 
than the volume fraction of r ~ b b e r . ~  He attributed 
this discrepancy to partial phase inversion of the 
system: occlusion of a fraction of the majority com- 
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Figure 2 Schematic of the microstructure represented 
by the modified Kerner-Dickie model, where mixing is 
allowed. Material between R1 and R2 constitutes the mixed 
interphase. 
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Figure 3 Input DMTA data (E-top panel; tan 6- 
bottom panel) for the models: (-) PEA inclusions, (---) 
PS matrix. 

ponent by the minority, forming a composite dis- 
persed phase of greater volume fraction than the 
rubber alone. Such composite inclusions are well 
known in high-impact polystyrene, for example. 

Dickie and Cheung l3 investigated polymer-poly- 
mer composites prepared via a two-stage emulsion 
polymerization, where methyl methacrylate was po- 
lymerized onto a crosslinked butyl acrylate seed la- 
tex. They were unable to adequately represent 
DMTA data for these systems with the Kerner- 
Dickie model, because the experimental glass tran- 
sitions in the composites were broader than those 
exhibited by the two pure components. However, 
data from simple blends of the homopolymers, of 
similar composition, could be adequately fit by the 
model. The Kerner-Dickie approach treats the 
components as immiscible, so no relaxation modes 
between the glass transition temperatures (T,) of 
the two pure components are predicted for the 
blends, nor are the transitions greatly broadened. 
The two-stage emulsion polymerization could pro- 
duce materials with a composition gradient where, 
between the rubbery core and the glassy shell, a sub- 
stantial interphase of mixed material exists. Such a 

material should exhibit broadened glass transitions 
when compared with a physical blend of identical 
composition, wherein little phase mixing occurs. 

In our previous work on 50/50 HPS/PEA 
we observed a similar broadening of the 

glass transitions as the HPS functionalization level 
increases, and incorporated the mechanical response 
of the interphase into the Takayanagi model, fol- 
lowing methods developed p r e v i o ~ s l y . ~ ~ ~ ~  Here, we 
modify the Kerner-Dickie model in an analogous, 
though simpler, fashion. The portion of the inter- 
phase with Tg < T is considered as part of the rub- 
bery inclusions, while the remainder is assigned to 
the matrix. Because the interphase has a continuous 
composition gradient, this yields a temperature-de- 
pendent volume fraction of inclusions. We compare 
the model with experimental E' data from DMTA 
for 90/10 and 70/30 w/w HPS/PEA blends, where 
the HPS functionalization level ranges from zero to 
3.72 mol %. In 50/50 blends, our earlier studies 
showed that 3.72 mol 96 substitution produced the 
most extensive interfacial mixing consistent with 
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Figure 4 Comparison of experimental E' data for the 
90/10 unfunctionalized blend (0) with predictions from 
the unmodified Kerner-Dickie model: (---I VME = V ~ E A  
= 0.10, (-) VME = 0.16. Also shown are the predictions 
of the modified model (- -) with VME = 0.16 and f = 0.45. 
Bottom panel gives an expanded view. 
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Figure 5 Comparison of experimental E' data for the 
70/30 unfunctionalized blend (0) with predictions from 
the unmodified Kerner-Dickie model: (---) VME = V,,, 
= 0.30, (-) V M E  = 0.44. Also shown are the predictions 
of the modified model (- -) with V M E  = 0.44 and f = 0.18. 
Bottom panel gives an expanded view. 

pure domain  center^,^ and resulted in greatly en- 
hanced stress-strain beha~ior. '~ 

EXPERIMENTAL SECTION 

The synthesis and characterization of materials uti- 
lized in this study has been described previ~usly. '~~'~ 
Briefly, these materials are blends of PEA with one 
of a series of p -hydroxyl-functionalized polystyrenes 
(HPS) of differing functional group content. The 
polymers were blended in dilute solution, freeze 
dried, and finally compression molded into films 
above the glass transition temperature of the HPS 
component. Acquisition of the DMTA data, using a 
Rheometrics RSA-I1 in tensile mode at 1 Hz, has 
also been previously des~ribed.98'~ The measured E ' 
values for the functionalized blends at  a given com- 
position were scaled by a factor near unity (kO.1)  
to ensure that the moduli matched those of the cor- 
responding unfunctionalized blend at temperatures 
below -50°C. This accounts for errors in determin- 
ing the sample cross sections; samples were always 

kept thin enough so that compliance of the RSA-I1 
transducer could be accurately accounted for. Ad- 
ditional information on these blends, including uni- 
axial tensile stress-strain curves and small-angle x- 
ray scattering data, can be found e1~ewhere.l~ 

MODEL DEVELOPMENT 

The viscoelastic form of the Kerner-Dickie equa- 
tion, l' written in terms of the temperature-depen- 
dent complex modulus E*, is: 

where 

(Y = 2 ( 4  - 5um) / (7  - 5u,) 

S = ( 1  + u r n ) / ( l  + ui) 
Y = ( 1  + u c ) / ( l  + urn) 
u = Poisson's ratio 

VM, = mechanically effective volume fraction 
of inclusions. 

Subscripts c ,  m, and i refer to the composite, ma- 
trix, and inclusions, respectively. Note that the var- 
ious E* quantities in eq. ( 1 )  are all complex; that 
is, they contain both real ( E ' )  and imaginary (E" 
= E' tan 6 )  parts. To actually compare eq. ( 1 )  with 
experimental E' or tan 6 data, it is necessary to al- 
gebraically resolve the real and imaginary compo- 
nents of E: . 

Figure 1 schematizes the microstructure assumed 
in the original Kerner-Dickie model; discrete 
spheres of the minority component (here, PEA) are 
dispersed within a continuous matrix of the majority 
component (here, PS). The plot at the bottom 
graphs the composition profile of the system, as a 
function of the distance r from the center of the 
inclusion; in the Kerner-Dickie model, where in- 
terfacial mixing is not allowed, there is a disconti- 
nuity in composition (Q+S) at  the inclusion ra- 
dius R .  

To incorporate phase mixing effects into the 
Kerner-Dickie model, we consider the inclusions to 
possess a core-shell morphology consisting of a core 
of pure minority component (radius R,) and a shell 
of mixed material (outer radius R'),  with a linear 
composition gradient extending from pure minority 
component at R1 to pure matrix at Rz.  This structure 
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Figure 6 Comparison of experimental E' data for the 
90/10 functionalized blends [(X) 2.90 mol % HPS func- 
tionalization; (A) 3.72 mol %] with the prediction from 
the modified model (-) with Vm = 0.16 andf = 1. Bottom 
panel gives an expanded view. 

is schematized in Figure 2. Because the Kerner 
equation considers only two types of material-ma- 
trix and inclusions-it cannot represent the contin- 
uous gradation of material properties resulting from 
the continuous composition profile in Figure 2. Thus, 
we divide the mixed material (between R, and R2) 
into two parts: at a given temperature T ,  all mixed 
material with a glass transition temperature Tg < T 
is treated as having the viscoelastic response of PEA, 
while all material with Tg > T is considered to have 
the viscoelastic response of PS. The Tg for material 
with a given QPs is found from the Fox equation.16 
This approach yields a temperature-dependent vol- 
ume fraction of inclusions and should capture the 
effect of phase mixing on the modulus. 

For a partially mixed system, with some of both 
the minority (PEA) and majority (PS) components 
still remaining in pure phases, the degree of inter- 
component mixing can be represented by the frac- 
tion of the total PEA contained within the shell in- 
terphase, denoted f :  
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Figure 7 Comparison of experimental E' data for the 
70/30 functionalized blends [(X) 2.90 mol %; (A) 3.72 mol 
%] with the prediction from the modified model with V,, 
= 0.44: (-) f = 0.7 and (---) f = 0.9. Bottom panel gives 
an expanded view. 

In eq. ( 2 ) ,  V,, denotes the mechanically effective 
volume fraction of inclusions in the absence of any 
phase mixing, which should be equal to the volume 
fraction of PEA if the inclusions are noninteracting 
and do not occlude any matrix material. As discussed 
below, VME is obtained by fitting the unfunctional- 

f = 0.45 

0.6 
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Figure 8 Temperature dependence of the effective vol- 
ume fraction of rubber calculated from the modified model 
for the 90/10 blends: (-) unfunctionalized blend, (---) 
2.90 and 3.72 mol % functionalized. 
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Figure 9 Temperature dependence of the effective 
volume fraction of rubber calculated from the modified 
model for the 70/30 blends: (-) unfunctionalized blend, 
(- -) 2.90 mol % functionalized, (---) 3.72 mol % func- 
tionalized. 

ized blend data to the original Kerner-Dickie equa- 
tion, which does not allow for phase mixing. Because 
the Kerner-Dickie model does not incorporate any 
effect of particle size-the only morphological pa- 
rameter is the volume fraction of inclusions-we 
nondimensionalize all lengths by D, which is the 
length of the side of a cube containing a single in- 
clusion. Rl is, thus, the nondimensional form of R, , 
and F is the nondimensional form of the radial dis- 
tance variable r .  

R2 denotes the outer limit of the interphase; its 
value is set by mass balance on the component 
forming the inclusions: 

If all the PEA is contained within the interphase, 
f = 1 and 3, = 0. Under these conditions, the linear 
composition gradient extends from the particle cen- 
ter out to the surrounding matrix, and the mixed 
interphase (outer radius R 2 )  has four times the vol- 
ume Vm that an inclusion would have in the absence 
of phase mixing ( f = 0; radius R1 in Fig. 1 ) . Strictly 
speaking, the mass balance in eq. ( 3 )  only holds if 
the inclusions do not occlude any matrix material, 
and VME equals the volume fraction of PEA ( VpEA).  

For composite inclusions, where VME > VpEA, the 
balance in eq. ( 3 ) is correct provided the occlusions 
are evenly distributed from 0 5 F I B2. 

With the assumption of a linear composition gra- 
dient between R1 and R2, the Fox equation can be 
used to determine the radius &, which corresponds 
to a position within the graded interphase where Tg 
= T, for any temperature Tg,pEA < T < Tg,p~. The 
densities of PS and PEA are quite similar,' so vol- 
ume fractions can be used in place of weight fractions 
in the Fox equation, yielding: 

This equation is solved for i;T at a given T; the vol- 
ume fraction of rubbery material within the system 
at T is given by: 

Because the composition profile is flat for F < 3, 
and F > B2, in these regions V, is given by: 

V, = (4a/3)7?! for T <  Tg,pEA ( 6 )  

V, = ( 4 ~ / 3 ) R $  for T >  Tg,p~ ( 7 )  

We emphasize that our model assumes pure do- 
main centers; that is, @ps = 0 at r = 0 in Figure 2. 
Calculations were performed utilizing eq. ( 1 ) with 
VME replaced by V,. In principle, the Poisson's ratios 
u in eq. (1) are temperature-dependent, complex 
quantities; however, very little information is avail- 
able on u*( T) . Fortunately, calculations by Dickie l 3  

indicate that the predicted dynamic moduli are 
rather insensitive to the value used for Poisson's 
ratio, so we take u to be exclusively real and set u, 
= u, = ui = 0.5 at  all temperatures. For the Tg values 
of the pure components, we use the tan 6 maxima 
foundg.14 in a 50/50 unfunctionalized blend ( Tg,pEA 

The complex modulus of the inclusions, E T , was 
assumed equal to that of PEA, which was measured 
e~perimentally.~ The modulus of the matrix EZ was 
obtained by shifting the PEA data to higher tem- 
perature by Tg,ps - Tg,pEA = 120°C, and scaling 
EZ vertically to match ET below -5OoC. The com- 
ponents of EZ and ET -namely, E' and tan 6 (=E"/ 
E )  are shown in Figure 3. This approach parallels 
our previous work'' on 50/50 w/w blends; though 
the shapes of the E* vs. T curves are not precisely 
identical for PS and PEA, or for HPS of different 

= 265 K; Tg,ps = 385 K).  
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functionalization level, we found the discrepancy to 
be inconsequential? For materials with greatly dif- 
ferent E* vs. T curves, it would be preferable to 
measure the viscoelastic response of both constit- 
uents and use these directly. As discussed in the 
Experimental section, the E data in Figure 3 were 
scaled by a factor near unity to ensure a match to 
the blend data at low temperatures. 

Unfortunately, this scheme for incorporating 
mixing effects does a poor job of describing tan 6 
data. Experimentally, tan 6 values increase for tem- 
peratures between the two pure-component Tg val- 
ues as a result of phase mi~ing. '~. '~ However, we 
consider the mixed interphase to be divided between 
the glassy and rubbery phases. Although this is suc- 
cessful in representing E' data-materials near Tg 
have E values between those of glass and rubber- 
it fails for tan 6 or E'', which both peak at Tr Cal- 
culations show that the Kerner-Dickie model gives 
tan 6 predictions very close to that of the matrix 
material12 for all temperatures above the inclusion 
Tg, and this undesirable feature is retained in our 
modified version. Therefore, we have considered only 
the E' data in optimizing the fit of our model to 
experimental data. Moreover, since the Kerner- 
Dickie model does not work well when the matrix 
is rubbery, the model predictions become unreliable 
as T approaches the glass transition of the matrix. 
Hence, we have optimized our model fits for T 
< 9ooc. 

RESULTS AND DISCUSSION 

Before fitting the functionalized blend data, values 
for VME are required. These were obtained by fitting 
the unmodified Kerner-Dickie model, eq. ( 1 ) , to E' 
vs. T data for the unfunctionalized (0.00 mol % )  
HPS/PEA blends, with a temperature-independent 
VME as the only adjustable parameter. Results for 
the 90/10 and 70/30 blend compositions are shown 
in Figures 4 and 5. In these plots, the dashed curve 
is the prediction obtained assuming that VME equals 
the volume fraction of PEA; this assumption yields 
E' predictions which exceed the experimental data 
for all T between Tg,pEA and Tg,ps. As in the work 
of Dickie, better agreement with the data in this 
intermediate plateau region was obtained by select- 
ing a mechanically effective dispersed phase volume 
fraction slightly greater than VpEA, shown as the 
solid curves in Figures 4 and 5. Because the un- 
modified model predicts a flatter plateau than ob- 
served experimentally, adjusting VME can only pro- 

duce agreement at a single temperature. We chose 
to match model and experiment at the arithmetic 
mean of Tg,ps and Tg,pEA (52OC). Choosing match 
points anywhere near the center of the plateau re- 
sulted in equally good fits when allowing for mixing 
in our modified model, with only slight differences 
in the parameters. 

Using the VME values from the solid curves in Fig- 
ures 4 and 5, we applied our modified model to the 
unfunctionalized blend data, with f as the only ad- 
justable parameter. Figures 4 and 5 show the excellent 
fits obtained to the E' data with the modified model, 
over the whole range of temperature. Best-fit values 
obtained were f = 0.45 for the 90/10 blend and f = 
0.18 for the 70/30 blend. This indicates that sub- 
stantial phase mixing is present even in the unfunc- 
tionalized blends. This result is not unexpected, be- 
cause we have previously noted that the solubility 
parameters of PS and PEA are very ~imi1ar.I~ 

This approach-keeping VM, fixed (a t  0.16 or 
0.44, depending on composition) and allowing f 
to vary-was extended to the functionalized 
blends. At the 90/ 10 composition, experimental 
data a t  the two functionalization levels (Fig. 6 )  
nearly superimpose, and an adequate represen- 
tation of both data sets is obtained with f = 1. If 
VME was also allowed to vary, the fit could be im- 
proved slightly over selected temperature ranges; 
the best fit to the functionalized 90/ 10 blends for 
T < 90°C was obtained with VME = 0.21 and f = 1, 
though this worsened the agreement a t  higher 
temperatures. The modest disagreement evident 
in Figure 6 can be attributed to our assumption of 
a linear gradient between R, and R2.  This provides 
a single description of the blend data in terms of 
only two parameters, VME and f ,  and gives the in- 
tegral in eq. ( 3)  a simple analytical solution. More 
complex interfacial profiles could be accommo- 
dated by using appropriate expressions for @ps in 
eq. ( 3 ) ,  but unless the shape of the interphase 
composition profile is known in advance, any im- 
provement of the fit to the E' data would come a t  
the expense of additional adjustable parameters. 
We have chosen to retain the simple linear com- 
position profile, and to obtain V,, from fits of the 
unmodified Kerner-Dickie model to the unfunc- 
tionalized blend data; thus, only one parameter is 
allowed to float in any particular fit. 

For the 70/30 blend data (Fig. 7 ) ,  a good rep- 
resentation was not obtained for either of the data 
sets. Although the model captures the qualitative 
shape of the data, the best fits ( a t  f = 0.7 and 0.9, 
respectively, for the 2.90 and 3.72% HPS/PEA 
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data) are quantitatively poor. As with the func- 
tionalized 90/ 10 blends, better (though still not 
excellent) fits over selected ranges of temperature 
could be obtained if both V M E  and f were allowed 
to vary; best-fit combinations of V M E  = 0.57, f 
= 0.58 (for the 2.90% data) and V M E  = 0.62, f 
= 0.60 (for the 3.72% data) were found. Exami- 
nation of our modified model, as depicted in Figure 
2, shows that the representation should fail as the 
product f V M E  nears 0.25. For f = 1 and V M E  = 0.25, 
the mixed interphase (radius R,) occupies the en- 
tire volume of the cube of edge D; nonetheless, it 
is treated as a discrete inclusion. Clearly, this 
is a physical impossibility. This conundrum is 
brought out more clearly in Figures 8 and 9, in 
which the effective volume fraction of rubber VR 
is plotted vs. temperature for all five of the model 
fits. For the 70/30 functionalized blends (Fig. 9 ) ,  
VR nears or reaches unity before the polystyrene 
Tg. For the 70/30 functionalized blends, even 
when both V M E  and f were allowed to float, the 
best fit obtained had a value o f f  V M E  similar to 
that obtained when V M E  was held fixed at  0.44. 
Examination of Figures 4-7 shows that a good fit 
is obtained with our modified model for f V M E  

N 0.08 (unfunctionalized blends), a reasonable 
fit is produced at  f VME = 0.16 (90/10 function- 
alized blends), and a poor fit is generated for 
f V M E  > 0.25 (70/30 functionalized blends). These 
results indicate that our modified model can prop- 
erly represent phase-mixing effects on E' when 
most of the material exists in pure phases, but 
fails when most of the material occupies a mixed 
interphase. 

CONCLUSIONS 

The Kerner-Dickie phenomenological model, which 
represents DMTA data for polymer blends with 
glassy matrices and rubbery inclusions, was modified 
to allow for interfacial mixing between components. 
The modification allows for a temperature-depen- 
dent volume fraction of rubbery inclusions, assuming 
a linear composition gradient across the interphase. 
The model was evaluated by comparing its predic- 
tions with experimental E' data for blends of PEA 
with HPS, where phase mixing is controlled through 
intercomponent hydrogen bonding. For the func- 
tionalized 90/10 w/w HPS/PEA blends, a good 
representation of the data was obtained with the 

assumption that all of the PEA within the system 
exists within the mixed interphase. It was also pos- 
sible to quantify the degree of phase mixing occur- 
ring in the unfunctionalized materials; roughly 45 
and 18% of the PEA must be mixed at  the 90/10 
and 70/ 30 compositions, respectively. However, only 
a poor representation of the functionalized 70/30 
blends could be obtained, due to extensive phase 
mixing. We conclude that the model can properly 
assess the extent of phase mixing when most of the 
components exist in pure phases, but not when the 
interphase constitutes the majority of the material. 
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